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Time-dependent stopping power and influence of an infinite magnetic field

Cord Seele,* Günter Zwicknagel,† Christian Toepffer, and Paul-Gerhard Reinhard
Institut für Theoretische Physik II, Universita¨t Erlangen, D-91058 Erlangen, Germany

~Received 17 April 1997; revised manuscript received 29 July 1997!

Using the dielectric theory for a weakly coupled plasma we investigate the time-dependent behavior of the
stopping power on a moving ion in a classical plasma. Special emphasis is placed on the transient properties
between the onset of the external distortion~ion! and the stationary regime of constant stopping. It is shown
that after a characteristic time of approximately a quarter of a plasma periodtp the stopping power has reached
its stationary value for a wide range of projectile velocitiesvp , and coupling constantsZ5Zp /(4pn0lD

3 )
~whereZp is the charge number of the projectile,n0 the electron density, andlD the Debye length!. For small
velocitiesvp the stopping power then shows damped oscillations about the stationary value. Comparisons with
the case of a one-dimensional dynamic associated with an infinite magnetic field show no significant further
delay in this transient behavior. This result is confirmed by a phase mixing approximation: deviations from the
stationary value occur with the samet23/2 law in either case. Furthermore, we present a Taylor series expan-
sion for very short times where the pole expansion approach reaches its limits. Molecular-dynamics computer
simulations have been done for the case without magnetic field. They are in good agreement with the theoret-
ical results for weak coupling and reveal the importance of nonlinear effects for stronger coupled plasmas
(Z@1). @S1063-651X~98!11602-1#

PACS number~s!: 52.40.Mj, 61.85.1p
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I. INTRODUCTION

Heavy ions lose energy when passing through a plas
Recent applications are electron cooling of heavy ion bea
and energy transfer for inertial confinement fusion@1,2#.
Electron cooling is realized by mixing the ion beam perio
cally with a cooler electron beam of the same average ve
ity. The interaction length is normally about a few mete
and the electron beam is guided by a magnetic field para
to its direction of motion. The cooling of the ion beam m
then be viewed as an energy loss in the common rest fr
of both beams. Similar questions arise in heavy-ion-indu
inertial confinement fusion. There a frozen hydrogen pelle
heated and compressed by stopping of~heavy! ion beams in
the surrounding converter. In this case the electrons of
solid state converter are acting like a plasma and absorb
incoming energy.

So far, investigations have concentrated on the long-t
behavior of the stopping power, both with and without ma
netic field~e.g.,@3#!. Extensions to stronger coupled plasm
and nonlinear effects of ion stopping have been done
various methods of computer simulations: molecul
dynamics~MD! @4,5#, particle-in-cell~PIC! @5,6#, and Vlasov
simulations@7,8#. Depending on the type of storage ring th
interaction time between electron and ion beam is from so
plasma periodstp down to 0.25tp ~ESR at GSI, Darmstadt!.
Therefore time-dependent considerations are quite impor
We will focus on the time-dependent stopping power in
case of electron cooling but it is clear that any tim

*Present address: Max-Planck-Institut fu¨r Aeronomie, Max-
Planck-Strasse 2, 37191 Katlenburg-Lindau, Germany.

†Present address: Laboratoire de Physique des Gaz et des Pla
Bâtiment 212, Universite´ Paris XI, 91405 Orsay, France.
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dependent effects are of great importance to inertial confi
ment fusion as well.

In Secs. II and III we will use the dielectric theory t
study the time dependence of the energy loss. We will fi
apply it to the three-dimensional case with no external fie
and later to a very strong magnetic field. Since any fin
magnetic field leads to a very complex description already
the case of stationary stopping a feasible theoretical appro
for a time-dependent description should at this stage cons
the case of an infinite magnetic field where the electrons
constrained to a one-dimensional motion~while the much
heavier ions are still allowed to move in all three dime
sions!. The only attempt known to us depends on an artific
cutoff parameter@9#, which is not well motivated. Further
more, this treatment presents results for the case of small
large ion velocities only whereas our approach is valid for
velocities. The full time dependence of the stopping pow
has to be evaluated numerically. Fort!tp andt@tp we give
in Secs. III C and IV some analytical approximations. Co
parisons with MD simulations in Sec. V for the field-fre
case show a good agreement between both approache
weak coupling but also reveal the importance of nonlin
effects for stronger coupling, which cannot be described
the dielectrical theory any more.

II. DIELECTRIC THEORY AND ASYMPTOTIC
CONTRIBUTION

Within the dielectric theory the electron plasma is d
scribed as a continuous, polarizable fluid~medium!, which is
represented by the phase-space density of the elect
f (r ,v,t) alone as long as only a mean-field interaction b
tween the electrons is considered and hard collisions are
glected. Such an approach is valid for weakly coupled pl
mas where the number of electrons in the Deb
sphere ND54pn0lD

3 @1 @n0 electron density, lD

as,
3368 © 1998 The American Physical Society
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57 3369TIME-DEPENDENT STOPPING POWER AND INFLUENCE . . .
5(e0kBT/n0e
2)1/25Debye length# is very large. In this case

the evolution of the distributionf (r ,v,t) is determined by the
Vlasov-Poisson equation. The perturbation due to the pro
tile ion with chargeZp enters as an external potentialfext,
while the electrons feel the total potentialf(r ,t), which is
the sum of the external and a mean-field contribution, tha
an induced potentialf ind. The induced potential causes th
stopping power on the projectile ion defined as

dE

ds
~vp ,t !52Zpv̂p•

]

]r
f ind~r ,t !U

r5vpt

. ~1!

For a sufficiently small perturbation one can calculate
response of the target plasma and hence the stopping p
by expanding the distribution functionf 5 f 01 f 11 f 21•••

and the total potentialf5f11f21••• in contributions of
nth order in the external perturbationfex. Even taking only
the linear contributions is already a very demanding t
when the translational invariance is lost in the boundary
gion of a plasma with finite extension. In many applicatio
however, the time the projectile spends in the boundary
gion is smaller than the transient time scale. In particula
an electron cooler, which is our main case of interest,
merging time of the ions and the electrons at the entranc
the cooler is much shorter than the transient time and
total time for passing the cooler section. Thus merging
essentially prompt. Furthermore, the ions have already p
etrated some screening lengths into the electron target w
the merging of the beams is finished. This allows one
consider the electron target as an infinitely extended, alm
unperturbed system, where the perturbation due to the
fast previous interaction of the ions with the boundary la
should be negligible. For such kinds of conditions the pro
lem of a transient regime in the stopping power can be
tacked by assuming an unperturbed homogeneous ta
plasma withf (t,0)5 f 0 andf(t,0)50 and a sudden ap
pearance of the ion with a velocityvp at t50 in the bulk of
the electron plasma. In this model, keeping only terms t
are linear in the external perturbation and after introduc
scaled, dimensionless variables r→r /lD ,
v→v/v th , t→vpt, f→ef/(kBT), f→v th

3 f /n0 with v th
2

5kBT/m and vp5v th /lD , we end up with the linearized
Vlasov-Poisson equation in the form

] f 1

]t
1v•

] f 1

]r
1

]f1~r ,t !

]r
•

] f 0

]v
50, ~2!

Df1~r ,t !524pZd~r2vpt !Q~ t !1E d3v f 1~r ,v,t !.

~3!

Here the first term on the right side of Eq.~3! reflects the
external perturbationfext by the projectile withZ5Zp /ND
and its sudden onset att50 described by the step functio
Q(t). The second term defines the contribution from the
duced potential

Df ind5E d3v f 1~r ,v,t !. ~4!
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Before proceeding further, we still have to comment on
validity of a linear description as given by Eqs.~2! and ~3!,
that is, to quantify the strength of the perturbation caused
the ion. To this end we compare the potential ene
uZpue2/4pe0r for an electron at a distancer in the field of the
ion with the kinetic energymv r

2/2 of the relative motion with
velocity v r . ~For a heavy projectile the reduced mass can
replaced by the electron massm.! Now we can assume a
weak ~local! perturbation whenever the potential energy
smaller than the kinetic one. Since we consider purely c
sical systems where no quantum effects will remove the
gularity of the Coulomb potential, there always exists a cr
cal distancer c where the potential energy equals the kine
energy and a strong perturbation occurs at distancesr ,r c .
The importance of this region of strong perturbation, ho
ever, depends on its size compared with the size of the wh
interaction zone, which is approximatively bounded byr
,l, where l represents the velocity dependent screen
length. From this picture we can deduce a criterion fo
globally weak perturbation by demanding a small ratio of t
critical distancer c to the screening lengthl:

r c

l
5

2uZpue2

4pe0m^v r&
2l

5
2uZpu

ND^v r /v th&
2~l/lD!

'
Z

11vp
3

!1.

~5!

Here we used the definition ofr c for an averaged energy o
relative motion indicated by the average^•••& over the ve-
locity distribution of the electrons. The screening lengthl is
at low projectile velocities and for weakly coupled plasm
just the Debye lengthlD while it becomes for high projectile
velocitiesl'vp /vp ~unscaled! 5lDvp ~with vp in units of
v th). The averaged relative velocity can be approximated
the thermal velocityv th for small projectile velocities and by
the projectile velocityvp for fast projectiles. A simple inter-
polation between the low and high velocity values ofl and
^v r& and the suppression of a factor 2 yields then the fi
expressionZ/(11vp

3) in Eq. ~5!, which represents the de
sired linearization parameter. For a discussion of more g
eral expressions for the strength of the perturbation that
clude quantum effects as well see@10#. Besides this simple
physical picture we used to derive the linearization param
one can alternatively inspect the scaled equations and
solutions. As already obvious from Eq.~3! the strength of the
perturbation will be proportional toZ. To work out also the
velocity dependence of the linearization parameter requi
however, solving the set of equations of next higher, i
second, order in the perturbation. This has been done,
instance, in@2# and yields as well criterion~5!.

As a first step towards the stopping power~1! the induced
potentialf ind can be calculated from the linearized Vlaso
Poisson Equations~2! and ~3! after applying a Fourier-
Laplace transform@(r ,t)→(k,s)#. From

@f ind~k,s!1fext~k,s!#F11
1

k2E d3vk•

] f 0

]v

1

is2k•vG
5fext~k,s!, ~6!

we obtain the dielectric function«(k,s) by the usual defini-
tion
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3370 57SEELE, ZWICKNAGEL, TOEPFFER, AND REINHARD
f15f ind~k,s!1fext~k,s!5fext~k,s!/«~k,s! ~7!

as

«~k,s!511
1

k2E d3v
k•] f 0 /]v

is2k•v
. ~8!

No assumption had yet to be made onf 0.

A. Absence of magnetic field

Assuming a three-dimensional Maxwellian distributio
for f 05(2p)23/2exp(2v2/2), the dielectric function~8! turns
into ~cf. @11,12#!

«~k,s!511
1

k2

1

A2p
E dv

i

v
i
exp~2v

i
2/2!

v
i
2 is/k

511
1

k2
$11 iApzexp~2z2!@erf~ i z!11#%

511
1

k2
@X~z!1 iY~z!#, ~9!

wherev
i
is the velocity component parallel to the wave ve

tor k, z5 is/kA2, andX,Y denote the real and imaginar
parts of the dispersion function, respectively. The dielec
function « ~9! only depends on the magnitude ofk and not
on its direction any more, since we consider an isotro
plasma. It has the important property

«~k,s!5«* ~k,s* !. ~10!

In terms of the dielectric function and with help of rel
tion ~7!, the stopping power as defined in Eq.~1! reads now
in Fourier-Laplace space

dE

ds
~vp ,t !52

4pZZp

i ~2p!4E d3k
ik• v̂p

k2

3E
2 i`1d

i`1d
ds

i

is2k•vp
F 1

«~k,s!
21G

3exp~ ik•vpt !exp~st!, ~11!

with d→01. We will refer to the scaled stopping power
the energy loss is divided byZZp . In consistency with Eq.
-

c

c

~3! we get dE/ds50 for t,0 by closing the contour of
integration in the right half-plane of the complexs plane. For
t.0 we can close the contour in the left half-plane yieldi
a sum over all enclosed polessj . Splitting off the contribu-
tion from the pole on the imaginary axis leads to

dE

ds
~vp ,t !52

ZZp

2p2
@A~vp!1D~vp ,t !#, ~12!

where

A~vp!5E d3k
ik• v̂p

k2 F 1

«~k,2 ik•vp!
21G , ~13!

D~vp ,t !5E d3k
ik• v̂p

k2
exp~ ik•vpt !

3(
j

ResF 1

«~k,s!G iexp~st!

is2k•vp
U

s5sj

. ~14!

While Eq.~13! is independent oft and yields the asymptotic
contribution to the stopping power, Eq.~14! depends on time
and describes the exponentially decaying dynamic contr
tion. The time-independent asymptotic contribution~13! can
be evaluated further. Due to the singularity of the Coulom
potential thek integral shows a divergence for largek.
Guided by the binary collision model a cutoffkmax is intro-
duced, which corresponds to the inverse of the impact
rameter for hard scattering events with a deflection an
larger than 90° for the given mean relative velocity^uvp
2vu&. In units of 1/lD and employing the scaling from abov
this cutoff reads@2#

kmax5
vp

212

uZu
. ~15!

In terms of the real and imaginary parts of the dispers
function ~9! the asymptotic contribution in the field-free ca
is @2,13#
f

A~vp!5
2p

vp
2 E0

vp /A2
djjH Y~j!ln

@kmax
2 1X~j!#21Y2~j!

X2~j!1Y2~j!
12X~j!Farctan

X~j!

Y~j!
2arctan

kmax
2 1X~j!

Y~j!
G J . ~16!

Herej5mvp /A2 andm denotes the cosine betweenk andvp . For the purely real argumentj the real and imaginary parts o
the dispersion function Eq.~9! take the form

X~j!5122jexp~2j2!E
0

j

exp~ t2!dt, Y~j!5Apje2j2
. ~17!
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Using Eqs.~16! and~17! analytical expressions for the asymptotic contribution to the stopping power~12! can be obtained in
the limits of small and large ion velocities and for linear~weak! coupling, i.e.,kmax@1. This yields

dE

ds
'2

vp

3
A2

p
ln~kmax!, vp!1,

~18!

dE

ds
;2

1

vp
2

ln~kmaxvp!, vp@1.

B. Infinite magnetic field

For the one-dimensional motion of the plasma electrons in an infinite magnetic field we have to take a slightly d
initial electron distributionf 0 in Eq. ~8!: there is only a Maxwellian distribution in the direction of the magnetic field. T
transversal motion perpendicular to the field lines is completely quenched and thus also the perturbationf 1 depends only on
v i . We note that this case has to be distinguished from the case of a plasma with a temperature anisotropyl5T' /Ti ~with
respect tovp) where f 1 may depend onv' even in the casel→0. In view of Eq.~9! we can now write

«~k,ki ,s!511
1

k2

1

A2p
E dv

i

v
i
exp~2v

i
2/2!

v
i
2 is/k

i

511
1

k2
@X~z i!1 iY~z i!#. ~19!

Due to the additional direction, which is significant, we have introducedz i5 is/(ukiuA2) with ki being the component ofk
parallel toB. Following the calculation of the previous section, we are only interested in the undamped mode (s52 ik•vp) for
the asymptotic contribution. For simplicity we will only consider the special case of the ion moving parallel to the ma
field: vpiB. Using the symmetry properties of the dielectric function, this contribution can be calculated exactly:

A`~vp!5
p

2FY~j!ln
@kmax

2 1X~j!#21Y2~j!

X2~j!1Y2~j!
12X~j!S arctan

X~j!

Y~j!
2arctan

kmax
2 1X~j!

Y~j!
D G , ~20!
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where j5vp /A2 and X(j),Y(j) as given in Eq.~17!. In
contrast to the three-dimensional case~16! the stopping
power at infinite magnetic field~20! is for high velocities
vp@1 @3#

A`~vp@1!;~p/vp!2 ~21!

and thus independent ofkmax. The cutoffkmax necessary a
low ion velocitiesvp&1 is, however, less well defined he
than for the three-dimensional electron motion, where
cutoff ~15! was deduced from the binary collision pictur
Now, the electrons are forced to move parallel toB. Since
we assumed the motion of the ion in this direction as well
ion and an electron just pass each other along a straight
For symmetry reasons the total momentum transfer and
stopping power are zero. Purely binary interactions cont
ute nothing and the stopping of the ion is only due to
collective response of the plasma, that is, due to modes
long wavelengthsk&1/lD . This suggests takingkmax of the
order of 1/lD , but further investigations are clearly need
here for a more precise description of the asymptotic st
ping power in this particular case. This problem, however
of minor importance for the transient behavior of the sto
ping power and will not be considered further since the tr
sient behavior is almost independent ofkmax. A change of
the cutoffkmax of course changes the asymptotic value at l
ion velocities, but the fully dynamic stopping power in un
of the asymptotic one is affected only slightly.
e

e
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III. DYNAMIC CONTRIBUTION

After this short overview on the asymptotic contributio
to the stopping power we now turn towards the dynamics.
we have already stated in connection with Eqs.~12!–~14! the
zeros of the dielectric function

«„k,sj~k!…50 ~22!

are responsible for the transient behavior. To get an imp
sion on the structure and the zeros of«(k,s), Fig. 1 shows a
contour plot of the inverse dielectric function in the compl
s plane fork50.5. The symmetry~10! is clearly visible. The
inverse of the dielectric function reveals an infinite numb
of poles located in the complexs plane at positionssj (k),
which are ordered according to decreasing Re(sj). The varia-
tion with k is addressed in Fig. 2 for the first two poless0 ,s1.
In contrast to all further poles that show a similar stro
damping Re(s)/Im(s)'1 ass1 ~short dashes!, the plasmon
poles0 ~solid curves! has the outstanding features of vanis
ing damping and a nonzero frequency for smallk. In the
limit k→0, where we haveuRe(s0)/Im(s0)u!1 anduzu@1,
the dielectric function Eq.~9! can be expanded to get th
well-known analytical solution of«„k,s(k)…50 @12#

s0~k!'2 iA113k22Ap

8

1

k3
expS 2

113k2

2k2 D , ~23!

which describes the dispersion of plasma waves. Here
second term, which vanishes exponentially fork→0, repre-
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sents the Landau damping caused by the transfer of en
from the collective to the single-particle motion. The ran
of validity of solution ~23! is shown as well in Fig. 2 by
comparison with the full numerical result; see the lon
dashed and solid curves, respectively.

While the weakly damped plasmon poles0 may be of
importance for the long time behavior, the infinite number
strongly damped further modessj can well be neglected in
this case. For the short time behavior of the stopping pow
however, they play a key role. As we are interested exa
in this case, we have to determine the functionssj (k) needed
for the dynamic contribution Eq.~14!. Since no analytical
treatment for solving the dispersion relation is available
general, this has been done by a numerical evaluation of
~22! for a huge range ofk and large number of polessj .

FIG. 1. Contour plot of the inverse dielectric functio
u«(k,s)u21 in the complexs plane fork50.5. Note the symmetry
about Im(s)50. The pole closest to Re(s)50 corresponds to the
plasmon poles5s0(k).
gy

-

f

r,
ly

q.

A. Absence of magnetic field

Before we can analyze the dynamic contribution~14! any
further we will calculate the residue for thej th pole of the
inverse dielectric function:

Res
1

«~k,s!
U

s5sj

5
1

]s«~k,s!
U

s5sj

5
2sjk

2

sj
21k211

. ~24!

Using the symmetry relation~10! for the dielectric function
ensures the dynamic contribution to be real since for ev
pole sj there is its complex conjugatesj* . Letting the j sum
in Eq. ~14! run over all complex pairs of poles and introdu
ing polar coordinates (m5 k̂•vp) we find

FIG. 2. Real and imaginary parts of numerically determin
dispersion relationssj (k) in terms of the plasma frequencyvp . The
solid curve shows the plasmon poles0(k), the short-dashed one
the poles1(k). The analytically obtained expression fors0(k), Eq.
~23!, is given by the long dashes.
e

D~vp ,t !5
4p

vp
2 E0

`

dkk3E
2vp

vp
dmm(

j
ReS sje

2 i ~ isj 2km!t

~sj
21k211!~ isj2km!

D . ~25!

Knowing Re@sj (k)#,0 ;k, j allows us to rewrite this with the aid of an integral representation

E
2vp

vp
dmm

exp@2 i ~ isj2km!t#

isj2km
5 i E

2vp

vp
dmmE

t

`

dt exp@2 i ~ isj2km!t#522E
t

`

dtFsin~kvpt!

~kt!2
2

vpcos~kvpt!

kt Gexp~sjt!.

~26!

With a j (k)5Re@sj (k)# and b j5Im@sj (k)#, the real part in Eq.~25! can be evaluated further. We finally obtain for th
dynamic contribution

D~vp ,t !528pE
0

kmax
dkk3E

t

`

dtFsin~kvpt!

~kvpt!2
2

cos~kvpt!

kvpt G(
j

ea jt

Nj
@S1 ja jcos~b jt!1S2 jb jsin~b jt!#, ~27!
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where the sum runs over all pairs of complex poles of
dielectric function~cf. Fig. 1! and we have used the follow
ing abbreviations:

Nj5~a j
22b j

21k211!214a j
2b j

2 ,

S1 j5a j
21b j

21k211, ~28!

S2 j5a j
21b j

22k221.

It should be noted that the upper cutoff parameterkmax in Eq.
~27! is kept only for reasons of consistency, since all d
namic contributions are exponentially damped fort.0. The
expression~27! has to be calculated numerically. The resu
for various projectile velocitiesvp and coupling strengthsZ
reveal that the stopping power is typically switched on d

FIG. 3. Results of the full dielectric treatment of the stoppi
power in case of no~solid curve! and infinite~short-dashed curve!
magnetic fieldB for Z50.03 andvp51 and 4. For better compari
son the data are given in units of the appropriate asymptotic va
~long-dashed line! of Table I.
e

-

-

ing a quarter of the plasma periodtp , as shown in Fig. 3
~solid curves!. The damped oscillations about the mean r
to the asymptotic value are more pronounced for small
locities vp , which yields the tendency towards a somewh
shorter transient regime at highvp . The absolute values o
the asymptotic contribution are given in Table I.

The numerical integration gets more and more involv
with decreasingt since more and more poles of the dielect
function have to be taken into account. Here we included
to 200 poles. For the short-time behavior other techniq
must be used. For that purpose we study in Sec. IV A Tay
series expansion of the stopping power.

B. Infinite magnetic field

Since the dielectric function changes in the magnetiz
case~19! we have to expect a different solution of the di
persion relation~22! too. If we focus on the special cas
vpiB, as in Sec. II B, an analysis of the root condition reve
that we can still use our data of the pole functionssj (k) if we
make the following substitution in Eq.~14!:

sj~k!→umusj~k!, ~29!

with m denoting the cosine of the angle betweenk and k
i
.

This can be interpreted as a frequency shift to lower val
and reduced damping for waves propagating with a trans
sal component to the magnetic field. This anisotropy is
surprising since the electrons in these waves are bound
one-dimensional motion parallel toB. Following the same
considerations as in Sec. III A we obtain a result similar
the field-free case, except for an additional integration
flecting the loss in symmetry

D~vp ,t !528pE
0

kmax
dkk3E

t

`

dtE
0

1

dmm2sin~mkvpt!

3(
j

ema jt

Nj
@S1 ja jcos~mb jt!1S2 jb jsin~mb jt!#.

~30!

Here we have used the same abbreviations~28! as before.
A numerical solution of the dynamic contribution

shown in Fig. 3@with kmax set to 1/lD , see the remark below
Eq. ~20!#. It is scaled to the asymptotic contribution~20! in
order to compare the time evolution with the field-free ca

es

TABLE I. Asymptotic values of the scaled stopping pow
2dE/ds ~in units of kBTe /lD) for various ion velocitiesvp .

B50 B5`a

Z
vp /v th 0.03 0.94 19.4

1 0.8590 0.1831 b 0.0435
4 0.4788 0.2632 0.0747 0.0411
7 0.1909 0.1204 0.0588 0.0109
12 0.0762 0.0522 0.0312 0.0035

akmax in Eq. ~20! is set to 1/lD ; scaled stopping power is therefor
independent ofZ.
bBreakdown of dielectric description.
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There seems to be a slight delay of about 0.1tp in the onset
of the stopping power in case of an infinite magnetic field.
the case of a slow projectile velocityvp<1 there is even an
excess in the transient period about 0.5tp .

C. One-pole approximation

In order to not rely on numerical results only, we give
admittedly crude approximation for determining the temp
ral behavior of the stopping power close to the station
regime. It turns out to be in good agreement with the pre
ous results. Let us consider a situation with no magnetic fi
first. Looking at Eq.~27! and taking into account the natur
of the poles~cf. Figs. 1 and 2!, we notice that upon ap
proaching the stationary case only one pole remains do
nant: the plasmon poles0. Considering only small velocities
vp,1 the dominant contribution to Eq.~27! arises from the
integration over smallk, while for higherk the oscillating
term rapidly goes to zero.

In the following approximation we neglect the Landa
damping term and consider only phase mixing of the in
grand for smallk, where Im@s0(k)#'2A113k2 ~23!. Ap-
plying a stationary phase condition to the remainingk inte-
grand yields Fresnel-type integrals upon expansion abou
stationary point. These integrals can then be solved ana
cally for timest*1. Keeping only the lowest order term int
we obtain the following expression for the dynamic cont
bution ~see Appendix for details!:

D~vp ,t !}t23/2cosS p

4
1n0t D1O~ t25/2!, ~31!

wheren05A12vp
2/3. A comparison with the full dielectric

treatment of Sec. III A is shown in Fig. 4. The slight shift
the phase and the higher amplitudes are due to the app
mation. For smaller velocitiesvp!1 the one-pole approxi
mation shows rapidly increasing amplitudes while pha
shift and periodicity remain unchanged; see Eq.~A4!. In the
case of an infinite magnetic field and if the ion is movi
along the magnetic field lines an analogous treatment@Eqs.
~A5!–~A8!# yields an expression similar to Eq.~31!, which
shows again a leadingO(t23/2) time dependence and whic
-
y
i-
ld

i-

-

he
ti-

xi-

e

compares to the full treatment for infinite magnetic fie
~Sec. III B! in a very resembling manner as displayed in F
4 for the nonmagnetized case.

IV. SHORT TIME BEHAVIOR

To get a better understanding of the processes forming
stopping power at very short time scales, we did a Tay
series expansion of the stopping power~11!:

dE

ds
~ t !5(

n

]n

]tn

dE

ds U
t50

tn

n!
. ~32!

For practical reasons we started with a Fourier transform
tion of the Vlasov-Poisson equations~2! and~3! that enables
us to analyze the potentialf tot as well. The~linearized! total
potential in (k,t) space obeys the integral equation

FIG. 4. Comparison of 1-pole approximation~short-dashed
curve! with the full dielectric treatment~solid line! for vp51 with-
out magnetic field andZ50.94. The corresponding asymptot
value from Table I is shown as long dashes.
~33!

with a differential equation forT(t):

]

]t
T~ t !52 ik•vT~ t !1f tot~ t !. ~34!

The expansion for the stopping power therefore reads

dE

ds
~vp ,t !52

Zp

~2p!3E d3k
k• v̂p

k2 E d3v•k
] f 0

]v (
n50

`

(
m50

n

~ ik•vp!n2m] t
mT~ t !U

t50

tn

n!
. ~35!
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Within the following paragraphs we do not present any details of the calculations because they are quite straigh
despite their length and focus on the results only.

A. Linearized theory

With an appropriate choice of coordinates it is possible to integrate thev andk integrals up toO(t5). Due to symmetry
arguments there is no contribution of any even order int ~stopping power must be real!. This yields

dE

ds
~vp ,t !52

ZZp

p H 2

27
vpkmax

3 t32
1

15Fvp

9
kmax

3 1S vp
3

25
1

vp

5 D kmax
5 G t51O~ t7!J , ~36!
e
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where we have to use the same cutoff parameterkmax as
before to keep thek integral finite. The same leadingt3

dependence is obtained in the case of an infinite magn
field, where the perturbationf 1 depends only onv i .

FIG. 5. Stopping power in units ofZZpkBT/lD and for Z
50.03 as a function of time from MD simulations~solid curve! and
from the dielectric description before~long-dashed curve! and after
~short-dashed! applying the average~38!. The projectile velocityvp

is given in units of the thermal velocityv th .
tic

B. Nonlinearized theory

As a further generalization we have applied the Tay
series expansion~32! also to the full Vlasov-Poisson equa
tion without the usual linearization according to the value
coupling strengthZ. The analytic approach gets quite com
plex already at low orders int and there is no chance for
handy recursion relation such as Eq.~34!. Up to third order
the stopping power is unchanged with respect to the prev
result ~36!, in particular we also need a cutoff for thek
integrals to stay finite:

dE

ds
~vp ,t !52

ZZp

p

2

27
vpkmax

3 t31O~ t5!. ~37!

From symmetry considerations~stopping power has to be
real! one can deduce that the next nonvanishing order
again beO(t5). This order will then show first contribution
of the nonlinearity. Comparing Eqs.~36! and ~37! we con-
clude therefore that a cutoffkmax must also be introduced in
the nonlinear treatment.

V. MOLECULAR DYNAMICS SIMULATIONS

In order to extend the results of the dielectric treatmen
stronger coupled plasmas (Z.1) where nonlinear effects
should become more important we have done molecular
namics simulations for three different coupling streng
(Z50.03, 0.94, and 19.4! and four ion velocities (vp51, 4,
7, and 12 in units ofv th).

A. Simulation technique

For the simulation the Newtonian equations of moti
were integrated forN5500 electrons and the projectile wit
a given and constant charge. The plasma was treated cl
cally with the interaction potential being the electrosta
Coulomb potential. The particles were constrained to a cu
simulation box with periodic boundary conditions and t
long-range part of the Coulomb interaction treated by
Ewald sum@14#. To increase the performance of the simu
tion program a special cluster technique@15# has been imple-
mented that allows a more accurate propagation of close
ticle encounters on smaller time scales while the ove
system evolves on a larger time scale. Before the simulat
the plasma electrons~without projectile! were brought into
equilibrium by thermalizing them to a desired temperatu
Then, the ion was put into the simulation box. By using 2
statistically independent thermalized plasmas and differ
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starting positions for the ion 1200 simulation runs were p
duced and averaged for each of the above 12 parameter
This huge data set was necessary to sufficiently improve
tistics for a good time resolution.

To reduce the fluctuations in the simulation data due
close collisions an increasing average

dĒ

ds
~vp ,t !5

1

t E0

t

dt8
dE

ds
~vp ,t8! ~38!

has been applied. All simulation data are displayed with t
averaging method.

B. Comparison with dielectric theory

In order to compare the simulations with results of t
dielectric theory we have to take into account the finite s
L of the MD simulation box, which leads to a long wav
length cutoff. For thek integration in the dielectric treatmen
we used the lower boundary

FIG. 6. Comparison of the stopping power from MD simul
tions and the dielectric treatment forZ50.94 ~top! andZ519.4
~bottom!. See Fig. 5 for the scaling and further details.
-
ets.
a-

o

is

e

kmin5
2p

L
. ~39!

Therefore the asymptotic values of the stopping power
slightly lower than those of Sec. III A~Table I!. A compari-
son of results from the dielectric theory and MD simulatio
can be seen in Figs. 5 and 6 forZ50.03, 0.94, and 19.4 and
different ion velocitiesvp . The theoretical results are show
with and without the increasing average~38! to allow for a
better assessment of its influence. Small oscillations
damped by this procedure. As the main feature a rapid o
of the stopping power within'0.25tp is clearly visible in
both approaches. About this typical time scale for the rise
the stopping power one can notice a tendency toward
somewhat shorter onset for increasing ion velocity at fix
coupling strengthZ ~Fig. 5! and a slower rise for increasin
Z at the same velocity~Fig. 5, bottom and Fig. 6, top!. For a
sufficiently high projectile velocity the dielectric theory ca
still be used also for highly charged ions, i.e., largeZ ~see
Fig. 6, bottom!, in agreement with the condition for linear
ization Z/(11vp

3)!1 ~5!. As a contrast Fig. 7 shows th
result of MD simulations for a strongly coupled plasma (Z
519.4) and a slowly moving ion (vp51). Notice the strong
excess in the stopping power near 0.5tp that decays only
slowly. It is due to nonlinear effects of the screening clo
that builds up behind the ion and persists because of its s
motion. Here the dielectric theory clearly has reached
limits.

VI. CONCLUSIONS

We present an extension to the well-known dielect
theory enabling us to describe the full time dependence
the stopping power for all ion velocitiesvp without magnetic
field and with an infinite magnetic field. In both cases w
find a transient time of about a quarter plasma periodtp for

FIG. 7. Stopping power in units ofZZpkBT/lD as a function of
time from MD simulations forZ519.4 andvp51. Nonlinear con-
tributions due to the strong coupling are responsible for a h
excess in stopping power and its slow decay to the stationary v
~dashed line! obtained by MD simulations over 22tp .
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a wide variety of ion-plasma coupling strengthsZ and ion
velocitiesvp . This time constant should have a significa
influence on the cooling properties of electron coolers a
ESR at the GSI in Darmstadt. The one-pole approximat
yields a time evolutionO(t23/2) close to the asymptotic re
gime. The Taylor series expansion of the stopping power
very short times reproduces theO(t3) behavior already men
tioned by Avilov @9#. All these results do not depend signifi
cantly on the influence of an infinite magnetic field. Final
we compare our analytic results in the field-free case w
molecular dynamics computer simulations. The time c
stant 0.25tp is also found in the MD simulations as long a
the coupling does not get so large that the nonlinear eff
of the interaction dominate.
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APPENDIX: STOPPING POWER IN ONE-POLE
APPROXIMATION

Applying the approximation of smallk andvp to Eq.~27!
wheres0(k)'2 iA113k2 yields
D~vp ,t !'28pE
0

kmax
dkk3E

t

`

dtS sin~kvpt!

~kvpt!2
2

cos~kvpt!

kvpt D 1

2k2
A113k2sin@A113k2t#. ~A1!

To evaluate thek integral we expand about the point of stationary phasek05vp /(923vp
2)21/2. With n(k)5A113k2

2kvp , g(k)5k21A113k2 andh(k)5A113k2, andn05n(k0)5A12vp
2/3 we obtain

D~vp ,t !'22p3/2E
t

`

dtH 2
h0

vpAn09
t23/2@sin~n0t!1cos~n0t!#2F g0

vp
2An09

2
h09

2vp~n09!3/2Gt25/2@sin~n0t!2cos~n0t!#

2
g09

2vp
2~n09!3/2

t27/2@sin~n0t!1cos~n0t!#J ~A2!
we
for the dynamic contribution. The remainingt integral can
be reduced to Fresnel-type integrals@16#

E
0

z

ducosS p

2
u2D5C~z!, E

0

z

dusinS p

2
u2D5S~z!.

~A3!

Expanding theC(z),S(z) functions for large arguments~i.e.,
t→`) allows for analytic expressions after collecting a
terms up to lowest order int:

D~vp ,t !'
~2p!3/2

vp
S 35

~32vp
2!7D 1/4

t23/2cosFn0t1
p

4 G .
~A4!

For an infinite magnetic field, where the ion is movin
parallel to the field lines, we have to use a slightly differe
dielectric function~19!, which in turn gives raise to a slightly
different dynamic contribution~30!. Applying the same ap-
proximations as in the field-free case (k!1, vp!1 and t
@1) yields

D`~vp ,t !'2pE
0

kmax

dkkA113k2E
0

1

dm

3mS sin~n2mt !

n2
1

sin~n1mt !

n1
D , ~A5!

with n6(k)5A113k26kvp .
t

Hence, using the stationary phase argument again,
evaluate them integral to obtain

D`~vp ,t !'2pE
0

kmax

dk
kA113k2

n2
2 S sin~n2t !

n2t2
2

cos~n2t !

t D .

~A6!

Introducing two newk-dependent functions

g~k!5
kA113k2

n2
2 t

and h~k!5
kA113k2

n2
3 t2

~A7!

enables us to expand the integral analogously to Eq.~A2!.
This yields

D`~vp ,t !'2~2p!3/2vpS 35

~32vp
2!11D 1/4

t23/2cosFn0t1
p

4 G
~A8!

for the infinite magnetic field.
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