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Time-dependent stopping power and influence of an infinite magnetic field
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Using the dielectric theory for a weakly coupled plasma we investigate the time-dependent behavior of the
stopping power on a moving ion in a classical plasma. Special emphasis is placed on the transient properties
between the onset of the external distort{gan) and the stationary regime of constant stopping. It is shown
that after a characteristic time of approximately a quarter of a plasma pgyrtbe stopping power has reached
its stationary value for a wide range of projectile velocitigs and coupling constantE:Zp/(Mrno)\%)
(whereZ,, is the charge number of the projectilg, the electron density, and, the Debye length For small
velocitiesv , the stopping power then shows damped oscillations about the stationary value. Comparisons with
the case of a one-dimensional dynamic associated with an infinite magnetic field show no significant further
delay in this transient behavior. This result is confirmed by a phase mixing approximation: deviations from the
stationary value occur with the samme®? law in either case. Furthermore, we present a Taylor series expan-
sion for very short times where the pole expansion approach reaches its limits. Molecular-dynamics computer
simulations have been done for the case without magnetic field. They are in good agreement with the theoret-
ical results for weak coupling and reveal the importance of nonlinear effects for stronger coupled plasmas
(£>1).[S1063-651%98)11602-1

PACS numbg(s): 52.40.Mj, 61.85+p

I. INTRODUCTION dependent effects are of great importance to inertial confine-
ment fusion as well.

Heavy ions lose energy when passing through a plasma. In Secs. Il and Il we will use the dielectric theory to
Recent applications are electron cooling of heavy ion beamstudy the time dependence of the energy loss. We will first
and energy transfer for inertial confinement fusitih2]. apply it to the three-dimensional case with no external fields
Electron cooling is realized by mixing the ion beam periodi-and later to a very strong magnetic field. Since any finite
cally with a cooler electron beam of the same average velodnagnetic field leads to a very complex description already in
ity. The interaction length is normally about a few metersthe case of stationary stopping a feasible theprencal appro_ach
and the electron beam is guided by a magnetic field paraIIJPr a time-dependent description should at this stage consider

to its direction of motion. The cooling of the ion beam may the case of an infinite magnetic field where the electrons are
: %onstrained to a one-dimensional motiomhile the much

then be viewed as an energy loss in the common rest fra S : : .
eavier ions are still allowed to move in all three dimen-

of both beams. Similar questions arise in heavy-ion-induced. g
o . . . Siong. The only attempt known to us depends on an atrtificial
inertial confinement fusion. There a frozen hydrogen pellet is

heated and d by stopinda on b . cutoff parametef9], which is not well motivated. Further-
caled and compressed by S oppmg avy ion beams in more, this treatment presents results for the case of small and
the surrounding converter. In this case the electrons of th

, o ?arge ion velocities only whereas our approach is valid for all
_sohd s_tate converter are acting like a plasma and absorb thg,ocities. The full time dependence of the stopping power
Incoming energy. __has to be evaluated numerically. Ret 7, andt> 7, we give
So far, investigations have concentrated on the long-timg, secs. 111 C and IV some analytical approximations. Com-
behavior of the stopping power, both with and without mag-parisons with MD simulations in Sec. V for the field-free
netic field(e.g.,[3]). Extensions to stronger coupled plasmascase show a good agreement between both approaches for
and nonlinear effects of ion stopping have been done bweak coupling but also reveal the importance of nonlinear
various methods of computer simulations: molecular-effects for stronger coupling, which cannot be described by
dynamics(MD) [4,5], particle-in-cell(PIC) [5,6], and Vlasov  the dielectrical theory any more.
simulations[7,8]. Depending on the type of storage ring the
interaction time between electron and ion beam is from some
plasma periods,, down to 0.25, (ESR at GSI, Darmstapt
Therefore time-dependent considerations are quite important.
We will focus on the time-dependent stopping power in the Within the dielectric theory the electron plasma is de-
case of electron cooling but it is clear that any time-scribed as a continuous, polarizable flgidediur), which is
represented by the phase-space density of the electrons
f(r,v,t) alone as long as only a mean-field interaction be-
*Present address: Max-Planck-Institutr flderonomie, Max- tween the electrons is considered and hard collisions are ne-
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Planck-Strasse 2, 37191 Katlenburg-Lindau, Germany. glected. Such an approach is valid for weakly coupled plas-
"Present address: Laboratoire de Physique des Gaz et des Plasm@§s where the number of electrons in the Debye
Batiment 212, Universitdaris XI, 91405 Orsay, France. sphere Np=4mnoA3>1 [n, electron density, \p
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=(ekaT/Nee?)>=Debye length is very large. In this case Before proceeding further, we still have to comment on the
the evolution of the distributiof(r,v,t) is determined by the validity of a linear description as given by Edq®) and(3),
Vlasov-Poisson equation. The perturbation due to the projedhat is, to quantify the strength of the perturbation caused by
tile ion with chargeZ, enters as an external potentia?’,  the ion. To this end we compare the potential energy
while the electrons feel the total potentia(r,t), which is |Zp|e2/47re0r for an electron at a distancan the field of the
the sum of the external and a mean-field contribution, that ision with the kinetic energynv 2/2 of the relative motion with
an induced potentiag™. The induced potential causes the velocity v, . (For a heavy projectile the reduced mass can be
stopping power on the projectile ion defined as replaced by the electron mass) Now we can assume a
weak (local) perturbation whenever the potential energy is
E ~ 0 smaller than the kinetic one. Since we consider purely clas-
s Vo == Zpvp - @™ 1) : (D) sical systems where no quantum effects will remove the sin-
r=vpt gularity of the Coulomb potential, there always exists a criti-
cal distance . where the potential energy equals the kinetic
For a sufficiently small perturbation one can calculate th%nergy and a strong perturbation occurs at distanees. .
response of the target plasma and hence the stopping powghe importance of this region of strong perturbation, how-
by expanding the distribution functioh="fy+f,+f,+---  ever, depends on its size compared with the size of the whole
and the total potentia$p= 1+ ¢+ - - - in contributions of  interaction zone, which is approximatively bounded by
nth order in the external perturbatiapf. Even taking only <)\, where\ represents the velocity dependent screening
the linear contributions is already a very demanding taskength. From this picture we can deduce a criterion for a
when the translational invariance is lost in the boundary reglobally weak perturbation by demanding a small ratio of the

gion of a plasma with finite extension. In many applications,critical distancer . to the screening lengtk:
however, the time the projectile spends in the boundary re-
gion is smaller than the transient time scale. In particular in r 2|1Z,|e? 2|z, Z

an electron cooler, which is our main case of interest, the T = o > ~ 3
merging time of the ions and the electrons at the entrance of M dmem(v)® N Np(or /o) (Mhp) - 1tvy 5

the cooler is much shorter than the transient time and the ®)
total time for passing the cooler section. Thus merging isHere we used the definition of, for an averaged energy of
essentially prompt. Furthermore, the ions have already pen|ative motion indicated by the average -) over the ve-
etrated some screening lengths into the electron target wheggity distribution of the electrons. The screening lentis

the merging of the beams is finished. This allows one toat |ow projectile velocities and for weakly coupled plasmas
consider the electron target as an infinitely extended, almogt;st the Debye length, while it becomes for high projectile
unperturbed system, where the perturbation due to the VeVelocitiesh ~v ,/w, (unscalell =\puv, (With v, in units of
fast previous in_te_raction of the i(_)ns with the _b_oundary Iayervth)_ The averaged relative velocity can be approximated by
should be negligible. For such kinds of conditions the probyhe thermal velocity 4, for small projectile velocities and by
lem of a transient regime in the stopping power can be atye projectile velocity , for fast projectiles. A simple inter-
tacked by assuming an unperturbed homogeneous targghiation between the low and high velocity valuesaoand
plasma withf (t<0)=T, and¢(t<0)=0 and a sudden ap- , y and the suppression of a factor 2 yields then the final

pearance of the ion with alvelocityp att=Q in the bulk of expressionZ/(lJrv,?;) in Eq. (5), which represents the de-
the e_Iectro_n plasma. In this model,_ keeping only_ terms t.hagired linearization parameter. For a discussion of more gen-
are linear in the external perturbation and after introducin

) i . %ral expressions for the strength of the perturbation that in-
scaled, dimensionless Va”abs'es r—_>r/)\D2, clude quantum effects as well sEB0|. Besides this simple
v—vloy, t—opt, d—edl(ksT), fﬁvthf/no W_'th Ut physical picture we used to derive the linearization parameter
=kgT/m and w,=vy/Ap, we end up with the linearized g can alternatively inspect the scaled equations and their
Vlasov-Poisson equation in the form solutions. As already obvious from E@) the strength of the
perturbation will be proportional t&. To work out also the
velocity dependence of the linearization parameter requires,
however, solving the set of equations of next higher, i.e.,
second, order in the perturbation. This has been done, for
instance, in2] and yields as well criterioK5).
Agi(r,t)=—47Z(r— v t)O(t)+ f d3uf(r,v,t). As a first step towards the stopping pow#y the induced

3) potential ™ can be calculated from the linearized Vlasov-
Poisson Equation$2) and (3) after applying a Fourier-
Laplace transfornfi(r,t)—(k,s)]. From

L 1fd3kafo 1
el S N s—kv

<1.

of of Jd r,t) of
I, 0 98D o

+
ot v ar ar ov ’ )

Here the first term on the right side of E() reflects the
external perturbatiors®™" by the projectile withZ=2Z,/Np
and its sudden onset &0 described by the step function [ ¢™(k,s)+ ¢*(k,s)]
O (t). The second term defines the contribution from the in-
duced potential

=¢%k,9), (6)

A¢‘”d=f oty (rvt). @ \t/ivoenobtaln the dielectric functioa(k,s) by the usual defini-
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d1=d"(k,s)+ ¢(k,s)= p®(Kk,s)/e(k,S) (7) (3) we getdE/ds=0 for t<0 by closing the contour of
integration in the right half-plane of the complsplane. For

as t>0 we can close the contour in the left half-plane yielding
ot a sum over all enclosed polsg. Splitting off the contribu-
1 -dfglov i i i i
e(k,s)=1+ _J By ol N ®) tion from the pole on the imaginary axis leads to
k2 is—k-v
No assumption had yet to be made Ty dE zZZ
P 4 n oV 0=~ —S[AVY+D(v,0], (12
27
A. Absence of magnetic field
Assuming a three-dimensional Maxwellian distribution h
for fo=(2m)  ¥Zexp(-v?%/2), the dielectric functiori) turns ~ V"€'€
into (cf. [11,12)
11 v EXH—v}i2) A(v )—dekik'op[ L w
e(k,s)=1+— J’dv — P k2 [s(k,—ik~vp) '
k2 27 I v, is/k
L+ — {1+ rdexp— ) ertli )+ 1]} ik-v
=1+— i Var{exp(— erf(i ik-v
k2 D(vp,t):f d3k kzpexp(ik-vpt)
1+ = [X()+iY ()] 9 1 |iexp(st)
=1+— i
2 ' Y
k X2 Re%e(k,s) is—k-v, 14

S:Sj

wherevH is the velocity component parallel to the wave vec-

tor k, {=is/ky2, andX,Y denote the real and imaginary . . . .
parts of the dispersion function, respectively. The dieIectricWhlle Eq.(13) is independent of and yields the asymptotic

function & (9) only depends on the magnitude lofand not contribution to the stopping power, E4.4) depends on time

on its direction anv more. since we consider an isotro iand describes the exponentially decaying dynamic contribu-
y ’ P QLion. The time-independent asymptotic contributid3) can
plasma. It has the important property

be evaluated further. Due to the singularity of the Coulomb
e(k,s)=e*(K,s*). (100  Ppotential thek integral shows a divergence for larde
Guided by the binary collision model a cutdf,, is intro-
In terms of the dielectric function and with help of rela- duced, which corresponds to the inverse of the impact pa-
tion (7), the stopping power as defined in Ed) reads now rameter for hard scattering events with a deflection angle

in Fourier-Laplace space larger than 90° for the given mean relative veloc{llyp
R —V|). In units of 1A and employing the scaling from above
dE AnZZ ik-v thi toff readg2
—(vp,t)=—_7T pJ &K P is cutoff readg 2]
ds i(2m)* k2
2
o+ 6 i 1 vp+2
_ Kmax= T35 (15
xJimgdsis—Kvp e(k,s) 4 mac |z
Xexpik-vpt)exp(st), (11

In terms of the real and imaginary parts of the dispersion
with 6—0". We will refer to the scaled stopping power if function(9) the asymptotic contribution in the field-free case
the energy loss is divided bgZ,. In consistency with Eq. is[2,13]

_ 27 (02 Knact X(OTP+Y2() X(£) k?naX+X(§)}
A(v,[,)—v—lzjj0 dgg{v(g)ln 22+ Y2(E) +2X(é)| arcta ) arctanW _ (16)

Here§=,uvp/\/§ andu denotes the cosine betwekrandv, . For the purely real argumedtthe real and imaginary parts of
the dispersion function Eq9) take the form

X(§)=1-2éexp — &%) f OgeXp(tz)dt, Y(&)=mee €. (17
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Using Egs.(16) and(17) analytical expressions for the asymptotic contribution to the stopping p@&gcan be obtained in
the limits of small and large ion velocities and for lindareak coupling, i.e. k1. This yields

dE vp (2
E% - ? ;In(kmax), Up<1,
(18
dE
EN— 2In(kma)pp), l)p>l

B. Infinite magnetic field

For the one-dimensional motion of the plasma electrons in an infinite magnetic field we have to take a slightly different
initial electron distributionf in Eq. (8): there is only a Maxwellian distribution in the direction of the magnetic field. The
transversal motion perpendicular to the field lines is completely quenched and thus also the pertéytigjmends only on
v| . We note that this case has to be distinguished from the case of a plasma with a temperature anisotropl (with
respect tov,) wheref, may depend ow, even in the casa —0. In view of Eq.(9) we can now write

kg =1 5 [ PR eiva) 19
e(KK,S)= +—2 f v — = +—2 H+| 1
k2 27 I v, IS/kH k
Due to the additional direction, which is significant, we have introdtgydedis/(|ku|\/§) with k; being the component d¢
parallel toB. Following the calculation of the previous section, we are only interested in the undampedswoedek(- v,) for
the asymptotic contribution. For simplicity we will only consider the special case of the ion moving parallel to the magnetic
field: vp||B. Using the symmetry properties of the dielectric function, this contribution can be calculated exactly:

I [kt X(£)12+ Y2(£) X(£) Kinax ™ X(a)
A“(vp)_E Y(&)In X22) +Y2(D) +2X(&) arctaw—arctanw , (20
|
where §=vp/\/§ and X(£),Y(¢) as given in Eq.(17). In . DYNAMIC CONTRIBUTION

contrast to the three-dimensional cakks) the stopping
power at infinite magnetic field20) is for high velocities
vp>1[3]

After this short overview on the asymptotic contributions
to the stopping power we now turn towards the dynamics. As
we have already stated in connection with H42)—(14) the
zeros of the dielectric function

A (vp>1)~(mlv,)? (2D e(k,s;(k))=0 (22

and thus independent &.,. The cutoffk..., necessary at are responsible for the transient behavior. To get an impres-
ax- max H 1
low ion velocitiesv ;=<1 is, however, less well defined here sion on the structure and the zerosegk,s), Fig. 1 shows a

than for the three-dimensional electron motion. where th&entour plot of the inverse dielectric function in the complex

cutoff (15) was deduced from the binary collision picture. §plane fork=0.5. The_symme_try10) IS clearly_V|_S|k_JIe. The
Now, the electrons are forced to move paralleBoSince inverse of the d|glectr|c function reveals an |r_1f|n|te number
we assumed the motion of the ion in this direction as well the® POles located in the complex plane at positions; (k),

ion and an electron just pass each other along a straight Iin?é‘{h'Ch are ordered according to decreasingsethe varia-

For symmetry reasons the total momentum transfer and thiton with k is addressed in Fig. 2 for the first two poRgss; .

stopping power are zero. Purely binary interactions contrip!N contrast to all further poles that show a similar strong

ute nothing and the stopping of the ion is only due to thedamping Reg)/Im(s)~1 ass, (short dashesthe plasmon

collective response of the plasma, that is, due fo modes witH°|e sp (solid curve$ has the outstanding features of vanish-

: ; damping and a nonzero frequency for smiallin the
long wavelength&=<1/\p. This suggests taking,.x of the Ing
order of 1kp, but further investigations are clearly needed!iMmit k—0, where we havéRe(s,)/Im(sp)| <1 and|Z|>1,

here for a more precise description of the asymptotic stopt€ dielectric function Eq(9) can be expanded to get the

ping power in this particular case. This problem, however, igVell-known analytical solution of (k,s(k))=0 [12]

of minor importance for the transient behavior of the stop- p 14 3K2

ping power and will not be considered further since the tran- ~_i [AraKr?_ \ﬁ_ _

sient behavior is almost independentlgf,,. A change of So(k) IW1+3k 8 3 ex;{ 2k2 ) 23

the cutoffk,,, Of course changes the asymptotic value at low

ion velocities, but the fully dynamic stopping power in units which describes the dispersion of plasma waves. Here the
of the asymptotic one is affected only slightly. second term, which vanishes exponentially ker O, repre-
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FIG. 1. Contour plot of the inverse dielectric function
le(k,s)| "t in the complexs plane fork=0.5. Note the symmetry FIG. 2. Real and imaginary parts of numerically determined
about ImE)=0. The pole closest to Re(=0 corresponds to the dispersion relations;(k) in terms of the plasma frequenay, . The
plasmon poles=sy(k). solid curve shows the plasmon pdag(k), the short-dashed ones

the poles; (k). The analytically obtained expression f&(k), Eq.
(23), is given by the long dashes.

sents the Landau damping caused by the transfer of energy
from the collective to the single-particle motion. The range
of validity of solution (23) is shown as well in Fig. 2 by
comparison with the full numerical result; see the long-
dashed and solid curves, respectively.

While the weakly damped plasmon paodg may be of
importance for the long time behavior, the infinite number of

A. Absence of magnetic field

Before we can analyze the dynamic contributiad) any
further we will calculate the residue for th¢h pole of the
inverse dielectric function:

. 1 1 —s;k?
strongly damped further modes can well be neglected in Res—— =—— =5 (29
this case. For the short time behavior of the stopping power, e(k,s) dse(k,s) s=s, S Tk +1

S=S;
however, they play a key role. As we are interested exactly J _ _ _ _
in this case, we have to determine the functieji&) needed ~Using the symmetry relatiofil0) for the dielectric function

for the dynamic contribution Eq(14). Since no analytical €nsures the Qynamlc contrlbutlion to be rea}I since for every
treatment for solving the dispersion relation is available inPoles; there is its complex conjugatgf . Letting thej sum
general, this has been done by a numerical evaluation of E¢f Eq. (14) run over all complex pairs of poles and introduc-
(22) for a huge range ok and large number of poles. ing polar coordinatesy=k-vp) we find

Qar [ Up S.e*i(isj*k#«)t
D(v ,t):—f dkk3f d R J : (25)
(0 v2Jo o ”“2 (S2+K2+1)(is;—kp)
Knowing Rés;(k)]<0 VKk,j allows us to rewrite this with the aid of an integral representation
Up exd —i(isj—ku)t] _va jw . fw sinkvy7)  v,cogkv,T)

d - =i d drexd —i(isi—ku)7]=—2| dr7 - exp(s;7).

j_up iy is,— Kk o ) A —i(isj—ku)7] t (k)2 s (s 7)
(26)

With a;(k)=Rds;j(k)] and g;=Im[s;(k)], the real part in Eq(25) can be evaluated further. We finally obtain for the
dynamic contribution

sin(kv,7) B cogkv,7)

(kva)2 kvpT

Kmax *©
D(vp,t)=—8'n'f dkk3f dr
0 t

eaj‘r .
; N_J.[Sljajcos{ﬁjT)+ng,8,~S|n(ﬁjr)], (27)
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TABLE I. Asymptotic values of the scaled stopping power
—dE/ds (in units ofkgT./\p) for various ion velocities, .

LN B B B B U AN AR NN R D B AN DNE NN BN RN RNR! DA DA MR BN

B=0 B=x?2

NN

vp /v 0.03 0.94 19.4

1 0.8590 0.1831 b 0.0435

4 0.4788 0.2632 0.0747 0.0411
7 0.1909 0.1204 0.0588 0.0109
12 0.0762 0.0522 0.0312 0.0035

¥Kmax IN EQ. (20) is set to X ; scaled stopping power is therefore

independent ofZ.
bBreakdown of dielectric description.

. V,= 1

Al b Lo b ¢ 0 0 1 0 & 0 0 1 0 1 4 1 1t

0 0.5 1.0 1.5 2.0 (solid curve$. The damped oscillations about the mean rise
t / T, to the asymptotic value are more pronounced for small ve-

ing a quarter of the plasma periag), as shown in Fig. 3

locities v,, which yields the tendency towards a somewhat
shorter transient regime at high,. The absolute values of
the asymptotic contribution are given in Table I.

t.of -——— = The numerical integration gets more and more involved
"""""""" h with decreasing since more and more poles of the dielectric

i function have to be taken into account. Here we included up
] to 200 poles. For the short-time behavior other techniques
1 must be used. For that purpose we study in Sec. IV A Taylor
] series expansion of the stopping power.

B. Infinite magnetic field

] Since the dielectric function changes in the magnetized
] case(19) we have to expect a different solution of the dis-
1 persion relation(22) too. If we focus on the special case
T =4 ) vp||B, as in Sec. Il B, an analysis of the root condition reveals
o.r Vo= ] that we can still use our data of the pole functisp&) if we

! '0~ PR VP P R PR R -1'0- - make the following substitution in Eq14):

0.5
t / T sj(k)—|ulsj(k), (29

’
’
'
'
'
’
'
'
’
:
’
4
L
s
L]
’
L
*
L]

with u denoting the cosine of the angle betwdemand kH'

FIG. 3. Results of the full dielectric treatment of the stopping This can be interpreted as a frequency shift to lower values
power in case of na@solid curve and infinite (short-dashed cur\ye_ and reduced damping for waves propagating with a transver-
magnetic fieldB for 2=0.03 andv,=1 and 4. For better compari- 3| component to the magnetic field. This anisotropy is not
son the data are given in units of the appropriate asymptotic valueg,rising since the electrons in these waves are bound to a
(long-dashed lingof Table I. one-dimensional motion parallel 8. Following the same

considerations as in Sec. Ill A we obtain a result similar to

dielectric function(cf. Fig. ) and we have used the follow- flecting the loss in symmetry
ing abbreviations:

Kmax «© 1
Nj=(af— 7+ K2 +1)2+4afB7, D(vp,t)=—87TJ dkk3f dTJ dpu?sin ukv 7)
0 t 0
Sjj=af+ Bk +1, (28 oneT
X2~y [Suacos wB; 1)+ Sy Bysin ).
J

Sy=al+ k-1
(30)

It should be noted that the upper cutoff paramé&tgy, in Eq.

(27) is kept only for reasons of consistency, since all dy-Here we have used the same abbreviati@® as before.
namic contributions are exponentially dampedtfsr0. The A numerical solution of the dynamic contribution is
expression(27) has to be calculated numerically. The resultsshown in Fig. Jwith k. Set to 1k, see the remark below
for various projectile velocities , and coupling strength€  Eq. (20)]. It is scaled to the asymptotic contributi¢20) in
reveal that the stopping power is typically switched on dur-order to compare the time evolution with the field-free case.
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There seems to be a slight delay of aboutr{).ih the onset S T
of the stopping power in case of an infinite magnetic field. In
the case of a slow projectile velocity,<1 there is even an
excess in the transient period about#£).5
1.0

C. One-pole approximation

In order to not rely on numerical results only, we give an
admittedly crude approximation for determining the tempo- ,
ral behavior of the stopping power close to the stationary Q
regime. It turns out to be in good agreement with the previ- 2 0.5
ous results. Let us consider a situation with no magnetic field 1
first. Looking at Eq.(27) and taking into account the nature
of the poles(cf. Figs. 1 and 2 we notice that upon ap-
proaching the stationary case only one pole remains domi-
nant: the plasmon polg,. Considering only small velocities
vp<<1 the dominant contribution to E27) arises from the 0.
integration over smalk, while for higherk the oscillating T N N
term rapidly goes to zero. 0 1 2 3 4

In the following approximation we neglect the Landau t / T
damping term and consider only phase mixing of the inte-

~ — 4 + 2 . -
grand for smalk, where Inf So(k)] 11+3k" (29 Ap FIG. 4. Comparison of 1-pole approximatioishort-dashed

plying a stationary phase condition to the remainkninte-
grand yields Fresnel-type integrals upon expansion about theurve) with the full dielectric treatmengsolid ling) for v,=1 with-

stationary point. These integrals can then be solved analytoUt magnetic field andz=0.94. The corresponding asymptotic
Value from Table 1 is shown as long dashes.

cally for timest=1. Keeping only the lowest order termtin

we obtain the following expression for the dynamic contri- compares to the full treatment for infinite magnetic field

bution (see Appendix for details (Sec. lll B) in a very resembling manner as displayed in Fig.
4 for the nonmagnetized case.

= S R S R S N LA L LI L SN I T L L

[ 2 1 = TN N TN W N T N S [N S Y T TN AN N A A MR o

a

D(Up't)“t_slzco{zJFVot +O(t™*), (31 IV. SHORT TIME BEHAVIOR
. ) ) ) To get a better understanding of the processes forming the
wherevo=1-v,/3. A comparison with the full dielectric = stopping power at very short time scales, we did a Taylor
treatment of SEC [l A'is shown in Fig. 4. The slight shift in series expansion of the stopping powét):
the phase and the higher amplitudes are due to the approxi-
mation. For smaller velocities,<1 the one-pole approxi- dE ;" de| t"
mation shows rapidly increasing amplitudes while phase E(t =2 snds| nt

. Ly . . t=0
shift and periodicity remain unchanged; see E#). In the
case of an infinite magnetic field and if the ion is moving For practical reasons we started with a Fourier transforma-
along the magnetic field lines an analogous treatmiEgs.  tion of the Vlasov-Poisson equatiof® and(3) that enables
(A5)—(A8)] yields an expression similar to E¢B1), which  us to analyze the potentigl'® as well. The(linearized total
shows again a leadin@(t~%? time dependence and which potential in ,t) space obeys the integral equation

(32

AinZ afo
tot 3 ! stot ' _
¢k, t)= \k exp(— zkvt)+k2 /d ( /dth (k,t"yexp(ik-vt' —1) 33
pext T@®)
with a differential equation fofZ(t):
J H tot
S0 =—ik- VIt + ¢*(1). (34)
The expansion for the stopping power therefore reads
dE( t)=- f d°k fo d% - —O§ é (ik-vp)" "M TTt) © (35
ds P (2m)3 IV A=0 m=0 P ! n!’

t=0
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Within the following paragraphs we do not present any details of the calculations because they are quite straightforward
despite their length and focus on the results only.

A. Linearized theory

With an appropriate choice of coordinates it is possible to integrate ted k integrals up toO(t°). Due to symmetry
arguments there is no contribution of any even order (gtopping power must be rgalThis yields

dE zz,( 2 v vy v
_ P 3 .3 P.3 P.Up| 5 |i5 7
- =——4= —— =k A=t = +
dS (Up !t) {27vpkmaxt 1 9 kmax 25 5 kmax t O(t )] H (36)
|

where we have to use the same cutoff paramkfgy as B. Nonlinearized theory
before to keep the integral finite. The same leadind As a further generalization we have applied the Taylor
d_ependence is obtained in the case of an infinite magnetiggries expansiof32) also to the full Vlasov-Poisson equa-
field, where the perturbatiofy depends only om. tion without the usual linearization according to the value of

coupling strengthZ. The analytic approach gets quite com-
plex already at low orders ih and there is no chance for a
handy recursion relation such as Eg§4). Up to third order
T the stopping power is unchanged with respect to the previous
- N result (36), in particular we also need a cutoff for the
- integrals to stay finite:

dE ZZ, 2 3 .3 5
y E(Up’t):_Tﬁvpkmaxt +0O(t>). (37)

0.5
From symmetry considerationstopping power has to be

. rea) one can deduce that the next nonvanishing order will
] again beO(t®). This order will then show first contributions
of the nonlinearity. Comparing Eq$36) and (37) we con-
clude therefore that a cutok,,, must also be introduced in
the nonlinear treatment.

—dE/ds

0 0.1 0.2 0.3 0.4 V. MOLECULAR DYNAMICS SIMULATIONS

t / P In order to extend the results of the dielectric treatment to
stronger coupled plasmasZ{1) where nonlinear effects
7 should become more important we have done molecular dy-
namics simulations for three different coupling strengths
(2=0.03, 0.94, and 19)4and four ion velocities®,=1, 4,
7, and 12 in units oby,).

A. Simulation technique

] For the simulation the Newtonian equations of motion
were integrated foN=>500 electrons and the projectile with
] a given and constant charge. The plasma was treated classi-
] cally with the interaction potential being the electrostatic
Coulomb potential. The particles were constrained to a cubic
] simulation box with periodic boundary conditions and the
8 long-range part of the Coulomb interaction treated by the
AT S S SR Ewald sum[14]. To increase the performance of the simula-
0 0.1 0.2 tion program a special cluster technidué&] has been imple-
t / T mented that allows a more accurate propagation of close par-
ticle encounters on smaller time scales while the overall
FIG. 5. Stopping power in units 0EZ,ksT/\p and for Z system evolves on a larger time scale. Before the simulation,
=0.03 as a function of time from MD simulatiotsolid curve and ~ the plasma electron@without projectilg were brought into
from the dielectric description befofeong-dashed curyeand after ~ equilibrium by thermalizing them to a desired temperature.
(short-dashedapplying the averagesg). The projectile velocity, ~ Then, the ion was put into the simulation box. By using 200
is given in units of the thermal velocity,, . statistically independent thermalized plasmas and different

0.2

~dE/ds

0.1F
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i - . &J o ]
0.05f b o C ]
- b I o0.010F 3
o.[ ] 0.005§
: 'l L i | 1 I: 0 E_ _:
0 0.1 0.2 0.3 0.4 [ 1
t / Tp -0 005-I 1l | N YN TN T N YO N T N T N YO T T SO 20 N A WY ) I:
0 0.5 1.0 1.5
A | L] T T L] t / Tp
0.025 ] FIG. 7. Stopping power in units &Z kg T/\p as a function of
C ] time from MD simulations forz=19.4 andv,=1. Nonlinear con-
0.020F E tributions due to the strong coupling are responsible for a huge
E . excess in stopping power and its slow decay to the stationary value
w 0 o15E . (dashed ling obtained by MD simulations over 23, .
o 3 ]
% 0.0105 3 kmin:T- (39
i N ]
0.005p Therefore the asymptotic values of the stopping power are
- . slightly lower than those of Sec. Ill ATable ). A compari-
0.r ] son of results from the dielectric theory and MD simulations
C , , , 3 can be seen in Figs. 5 and 6 8= 0.03, 0.94, and 19.4 and
.4

ol

0 0.1 0.2 0.3 different ion velocities),. The theoretical results are shown

t / T with and without the increasing avera¢#8) to allow for a
better assessment of its influence. Small oscillations are
damped by this procedure. As the main feature a rapid onset
of the stopping power within=0.25r, is clearly visible in
both approaches. About this typical time scale for the rise of
the stopping power one can notice a tendency towards a
somewhat shorter onset for increasing ion velocity at fixed
starting positions for the ion 1200 simulation runs were procoupling strengthZ (Fig. 5 and a slower rise for increasing
duced and averaged for each of the above 12 parameter sefsat the same velocityFig. 5, bottom and Fig. 6, topFor a
This huge data set was necessary to sufficiently improve staufficiently high projectile velocity the dielectric theory can

FIG. 6. Comparison of the stopping power from MD simula-
tions and the dielectric treatment f&=0.94 (top) and Z=19.4
(bottom. See Fig. 5 for the scaling and further details.

tistics for a good time resolution. still be used also for highly charged ions, i.e., lagsee
To reduce the fluctuations in the simulation data due tcrig. 6, botton), in agreement with the condition for linear-
close collisions an increasing average ization 2/(1+v3)<1 (5). As a contrast Fig. 7 shows the
—_— result of MD simulations for a strongly coupled plasma (

d_E(U t)= Eftdt’ d_E(U t) (39) =19.4) and a slowly moving ionv(,=1). Notice the strong

ds' P t)o  ds P’ excess in the stopping power near £,3hat decays only

slowly. It is due to nonlinear effects of the screening cloud

_ . _ ) ) _that builds up behind the ion and persists because of its slow
has been applied. All simulation data are displayed with thigygtion, Here the dielectric theory clearly has reached its
averaging method. limits.

B. Comparison with dielectric theory VI. CONCLUSIONS

In order to compare the simulations with results of the We present an extension to the well-known dielectric
dielectric theory we have to take into account the finite size¢heory enabling us to describe the full time dependence of
L of the MD simulation box, which leads to a long wave- the stopping power for all ion velocities, without magnetic
length cutoff. For thek integration in the dielectric treatment field and with an infinite magnetic field. In both cases we
we used the lower boundary find a transient time of about a quarter plasma perigdor
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tioned by Avilov[9]. All these results do not depend signifi-

cantly on the influence of an infinite magnetic field. Finally,

we compare our analytic results in the field-free case with APPENDIX: STOPPING POWER IN ONE-POLE
molecular dynamics computer simulations. The time con- APPROXIMATION

stant 0.25, is also found in the MD simulations as long as

the coupling does not get so large that the nonlinear effects Applying the approximation of smak andv , to Eq.(27)
of the interaction dominate. wheresy(k)~ —i+/1+3k? yields

sin(kv,7) 3 cogkv,7)

(kva)Z kv,7

D(vp,t)~—swf0kmaxdkk3ftwd7( )%\/1+3kzsir[\/l+3k27]. (A1)

To evaluate thek integral we expand about the point of stationary phb@evp/(9—3v§)‘l’z. With »(k)= 1+ 3k?

—kv,, g(k)= k= 11+ 3k? andh(k) = 1+ 3k?, andvo= v(ko) = \/1_vzp;3 we obtain

* ho . Yo hg .
D(vy,t)~ —2773/2J' dr[ - = 37 sin(vy7) + cog VOT)]—|: = — p ¥ sin(vy7) — coq vo7)]
P t vp\/V_O vg\/v—o 2vp(vo)3/2
- Zg—gf_m[sin( voT) +C0g voT)] (A2)
2v5(vp) ¥
|
for the dynamic contribution. The remainingintegral can Hence, using the stationary phase argument again, we
be reduced to Fresnel-type integrpl$] evaluate theu integral to obtain
fz {W 2) z T o2
ducog -u|=C(2), f dusin(—u )=S(z).
0 2 0 2 A3 Do 0)=2 fkmaxdkk\/1+3k7/sin(vt) cogv_t)
(A3) =Up m 0 1/2_ \ v_t2 t .
Expanding theC(z),S(z) functions for large argumentse., (AB)

t—o) allows for analytic expressions after collecting all
terms up to lowest order it

14 Introducing two newk-dependent functions
(277) 3/2{ 35 Can T
D(v,,t)=~ t~'“cos vot + —

vp | (3-0}) 4 2 2
A4 ky1+3k ky1+3k
For an infinite magnetic field, where the ion is moving vt v2t

parallel to the field lines, we have to use a slightly different

dielectric function(19), which in turn gives raise to a slightly

different dynamic contributiori30). Applying the same ap- enables us to expand the integral analogously to (Eg).
proximations as in the field-free cask<1, v,<1 andt  This yields

>1) yields
kmax 1 1/4
A~ + 2 35 a
D.(vp,t) wao dkky1+3k fo du Dw(vp,t)%—(Zﬂ')slzvp(—zn) t3’200{v0t+z
(3—vp)
(A8)

« ,U«< sin(v_ ut) N sin(v, ut)

v_ vy

) , (AD)

with v (k) =1+ 3k?= kv,. for the infinite magnetic field.
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